
 1

VIRTUAL C MACHINE AND
INTEGRATED DEVELOPMENT ENVIRONMENT

FOR ATMS CONTROLLERS

Newell Crookston
Brian Whipple

William Grenney

Utah State University

UDOT Report #00.07

April 2000

 2

 Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the
facts and accuracy of the information presented herein. This document is disseminated under the
sponsorship of the Department of Transportation, University Transportation Centers Program, in
the interest of information exchange. The U.S. government assumes no liability for the contents
or use thereof.

 3

TABLE OF CONTENTS

INTRODUCTION...1

 Background...1

OBJECTIVES...2

PREPARING WITH OS-9 AND FASTRAK...4

 Working with the 2070 Controller ..4

 Using FasTrak...4

 The 2070 Controller and OS-9..5

TRAFFIC LIGHT SIMULATION TESTS..8

 Traffic Light Simulation Using the Controller’s Front Panel.......................................8

 Traffic Light Simulation Using the Graphical Process Model 10

BUILDING THE INTERPRETER, C COMPILER, AND IDE... 11

 The Interpreter... 12

 The Compiler .. 13

CONCLUSIONS... 19

RESOURCES ... 20

APPENDIX A: GRAMMAR.. 21

APPENDIX B: SOURCE CODE.. Available on Request

 1

INTRODUCTION

Background

Many digital controllers are in use today, and the number is rapidly increasing as

additional elements of Intelligent Transportation Systems (ITS) are implemented. Digital

controllers perform functions in accordance with the software code implemented in the controller.

When modified or extended functionality is required, new software code must be loaded into each

individual controller. An even more difficult problem is caused by the fact that different

controllers use different proprietary operating systems, therefore, custom code must be developed

for a variety of controller types.

 Because of the proprietary characteristics of the software environments, modifying

programs and interfacing different brands of controllers is an expensive and difficult task. Due to

their nature, controllers normally used in transportation are linked by electronic networks.

Considerable economies could be achieved by implementing a virtual machine on the controllers

that process uniform byte code, which can be accessed by means of a wide area network.

 It is difficult to implement a virtual machine on current controllers because of limitations

of the central processing unit and operating system. For example, attempts to install Java, the

popular virtual machine developed by Sun Microsystems, have not been successful because of

many requirements for computer resources, which are not available on the controllers.

 Achieving a practical virtual machine that fits on current controllers and provides the

functionality needed for complex traffic operations could produce substantial savings for traffic

control operations.

 2

OBJECTIVES

The overall objective of this project is to develop a prototype virtual machine that fits on

current ATMS controllers and provides functionality for complex traffic operations. The virtual

machine will be developed and tested using the popular controller: the Matrix Model 2070 ATMS

Controller. Pictures of the controller are shown in Figure 1. The controller operates under

Microware OS-9 real-time operating system. Development tools are provided by Microware

FasTrak tools including a library of C functions, the Makefile Editor, debugger, and Target

System Tool.

Objective 1:

Obtain a Matrix Corporation Model 2070 ATMS Controller with OS-9 operating system

and C compiler for conducting the study.

Objective 2:

Study and learn the features of the controller, operating system, and compiler so effective

software can be developed.

Objective 3:

Investigate candidate virtual machines, such as Java, for implementation on the

controller.

Objective 4:

Develop or modify an existing virtual machine for prototype implementation on the

controller.

Objective 5:

Develop or modify an existing Integrated Development Environment (IDE) for the

prototype virtual machine.

Objective 6:

Demonstrate the prototype virtual machine and software development environment.

 3

 4

PREPARING WITH OS-9 AND FAS TRAK

Working with the 2070 Controller

 Gardner Transportation Systems, Inc. and the Utah Department of Transportation

provided a Matrix Model 2070 ATMS Controller, Microware OS-9 operating system, and

Microware FasTrak software tools for the study. The equipment was loaned to Utah State

University for the project’s duration.

Using FasTrak

FasTrak is a library of C functions provided by Microware, Inc. It consists of three primary tools:

• The Makefile Editor

• The Debugger

• The Target System Tool

Codewright Professional text editor is bundled into the FasTrak package. The Makefile Editor

tool uses user developed source code to generate procedure files called “makefiles,” which

describe the relationship between the final product and the source files that build the product.

After the make file is generated an executable module can be compiled for the DOS environment

using the command:

Os9make –f makefilename.mak

The compiler has a useful set of error messages to assist the user with debugging the source code.

Executable modules also can be compiled in the MS 9x/NT environment using the “Build”

command. However if the compilation fails under MS 9x/NT, no error messages are displayed –

the .exe simply is not created.

 The Target System Tool is used to interact with the 2070 controller. The OS-9

executable modules created through OS9 Make, as explained above, will run on the controller,

and processes can be monitored by the Target Tool. Also, the activities of the processes running

on the controller can be changed through inter-process communication. The input command of

 5

the client process determines the procedure sequence, and so the activity of the controller can be

controlled remotely using the FasTrak Target System Tool.

The 2070 Controller and OS-9

 The Transportation Electrical Equipment Specifications (TEES) were used to understand

the operation of the controller. Also the book “Using Microprocessors and Microcomputers – the

Motorola Family” provided excellent reference material. Excellent information for the operation

of OS-9 was found in the “OS-9 Primer” at the c:\mwos\doc\FTW68K\home.pdf documentation

file supplied with the software.

1. Development Environment: in our project, we use a PC-hosted development environment.

Matrix "2070 DOS Development Package" (PCBridge) installed on a PC, served as a bridge

to allow development of an OS-9 system on a standard IBM compatible computer running

DOS or an equivalent. The PCBridge let us compile our programs and create OS-9 modules

on PC. When networking features are not configured, PCBridge communicates with OS-9

through a serial interface between the PC and OD-9 systems. Using a hyper-terminal

(obtained from the accessory of windows), which interacts with the controller's embedded

OS-9, modules are transferred using the kermit protocol.

Also there is a one-time process to configure networking on the controller. Once this has

been done, we just need to run a procedure file to get the networking up and running. The

procedure file "loading" is enclosed in Appendix (see Appendix 1.). Using ping to test if the

network connection is established. Then, start the FasTrak's target tool, connect to the

controller (in our project, ip address: 129.123.9.78), and run the modules created on PC

remotely (see chapter 1 about FasTrack target tool). The target system window acts as a

dumb terminal. It allows us to seamlessly execute commands that reside on the host as if

they were resident on the OS-9 system.

OS-9 system is multi-tasking, many users on the system can run shell simultaneously, or

one user can run many processes concurrently.

2. OS-9 shell is similar to Unix. The following are some common shell commands and utilities

that we found to be useful for the project:

 setenv − declare the variable and set the value of the variable

 6

 unsetenv −clear the value and remove the variable from storage

 printenv − print the variables and their values to standard output

 dir − get a listing of the files in the current directory

chd <path> − change the current data directory to the directory specified by the path

pd − print the absolute location of the current directory

kill <proc ID> − abort the process specified by <proc ID>

profile <path> − read input from a named file and then return to the shell's original input

source

procs − lists all processes currently running on OS-9

mdir − lists all the modules in memory

wait − wait for all child processes to terminate

devs − lists all initialized devices on the system

iniz <device descriptor name> − initialize the device

load − to place the modules from a file into memory

3. Environment variables can be retrieved within a program (see Appendix A.).

4. Paths and Processes:

The number of each path represents a 256 byte system data structure called a path descriptor.

OS-9 using this number to hold information pertaining to the particular path. This

information includes the actual device descriptor/driver/file manager related to the path, the

number of processes using the path, access modes the path was opened with, and the memory

location of storage area for the particular path's driver. So the idea of imbedded system

programming simply is write to a specific address and then read from that location.

5. Basic C Calls for Paths:

_os_open(): open a path to an existing file or device

_os_create(): create a new file, and open it at the same time

_os_dup(): duplicate one of its open paths

_os_close(): close an access to a path

_os_read(): reading data from a path that has been opened

_os_write(): data are written to a device

_os_exec() and _os_fork: to spawn a child process, a potential parent make a call

 7

_os_exec(), and _os_fork create a new process

6. There are six serial ports on the controller. The global variables used for their path id are

all defined in file: c:\mwos\os9\cpu32\ports\mscpu360\src\config.h :

#define FIELDIO_PORT "/sp5" /* sp5 , scc3 , /t2 */

 #define FRONTPANEL_PORT "/sp6" /* sp6 , scc4 , /t3 */

 #define GP_TIMER_PORT "/tims"

 #define SRAM_DISK "/r0"

 #define FLASH_DISK "/f0"

 #define LED_PORT "/led"

 #define SP1_PORT "/sp1" /* sp1 , scc1 , /t0 */

 #define SP2_PORT "/sp2" /* sp2 , scc2 , /t1 */

 #define SP3_PORT "/sp3" /* sp3 , smc1 , /t4 */

 #define SP4_PORT "/sp4" /* sp3 , smc1 , /t4 */

Port 4 (SP4_PORT) was used during the project to interact with the controller.

Validation Suit (TEES 9-2-0): provided a working example of how to program all functions,

and all of the 2070 controller's unit functions were tested. Execution from the shell will

commence by typing "simpletest" from the prompt. The specific unit will be tested according

to the command (A, B… Q) keyed in:

 <A> Display the Time of Day from the hardware TODC

 Set the Time of Day.

 <C> Set the Kernel TOD from the hardware TODC

 <D> Show Field I/O DataKey Contents

 <E> Verify Linesync Interrupts

 <F> Display the Inputs from the Field I/O Module

 <G> Set the Outputs on the Field I/O Module

 <H> Serial Port Tests

 <I> General Purpose Timer Tests

 <J> Display text on the Front Panel

 <K> Read input from the Front Panel

 <L> Flash Disk Test

 <M> SRAM Disk Test

 <N> CPU Activity LED Test

 8

 <O> Activate the CPU Reset

 <P> 2070 System Test

 <R> Continuous 2070 System Test

 <S> OS9 Command Shell

 <Q> Quit

7. Inter-process Communication and Signals:

Signals are software generated interrupts. When a process has a signal sent to it, that process

will put its current code location on hold, execute a signal handling function, and after the

handler is done, continue executing at the place put on hold.

Signal intercept routine:

 _os_intercept() installs a routine, specified as one of the input parameters, as the process'

signal handler.

 _os_send() will send the signal to a specific process.

8. Combining Assembly Language with C Routines: in the Ultra C compiler, there is a built-

in function _asm() to allow assembly instructions to be placed in a C source file.

TRAFFIC LIGHT SIMULATION TESTS

Traffic Light Simulation Using the Controller’s Front Panel

The goal of this task was to learn how to send instructions through a client process to a

server process using the FasTrak Target Tool residing on the host PC. The Target Tool was used

to control the activities of the modules running on the controller. (Code details are included in

Appendix A).

Two modules, the client and the server, are created on host PC. The FasTrak Target Tool

was used to run these two modules remotely by connection to the controller, which also is a

network node. At the prompt from the client process:

 9

<1> traffic lights cycles simulation.

<2> Led flash five times.

<3> QUIT.

On entering 1, traffic lights simulation will appear on the front panel:

 South-West North-East

 Red Red

 Yellow Yellow

 Green Green

Blinking text indicates that a light is on.

 The original cycle is:

 South-West North-East

 45s Red Green

 8s Red Yellow

 4s Red Red

35s Green Red

 8s Yellow Red

 4s Red Red

 command 1 − scale the original cycle down to 1:10, with the active light off;

 command 2 − scale the original cycle down to 1:5, with the active light on;

 command 3 − exit the simulation.

The step-by-step procedure follows:

(1) Open the FasTrak target tool and connect to controller (ip = 129.123.9.78).

(2) Load the module "server" from "Action" menu bar.

(3) At the prompt, type "client" to run client module.

(4) Respond to the prompt according to the menu.

(5) When testing is done, unlink the server module.

Each time a module is modified, the new module should be reloaded into the memory.

 10

A second test was conducted using an interrupt process. The light cycle was put into an infinite

loop. The user can trigger an interrupt from the console or from a networked PC. The interrupt

handlers reside in the body of each simulation procedure.

Traffic Light Simulation Using the Graphical Process Model

A graphical process model was developed on the PC using Borland’s Delphi 4.0. The code

details are included in Appendix A. The simulated traffic light cycle is the same as described

above. The program uses threads to control the “start,” “suspend,” and “resume” status of the

light. Sockets are used to do the inter-process communication. The procedure for running the

module follows:

(1) Run project2.exe - form 2 will pop up.

(2) Click ShowClient button and another form 1 will pop up.

(3) Type in an integer scale in the scale field.

(4) Type in “0” in the text field of the Client form to start the light cycle simulation. The text

field will display the command for confirmation of Client's request.

(5) Type in 1 in the text filed of the Client form to suspend the lights cycle simulation. Text

field of form 2 will echo and show the real command of Client's request.

(6) Type in 2 in the text filed of the Client form to resume the lights cycle simulation. Text

field of form 2 will echo and show the real command of Client's request.

(7) In form 1, start, suspend, and resume all can be tested independently; the cycle frequency

also can be changed during the testing.

(8) Use the menu to terminate the program.

 11

BUILDING THE C COMPILER, IDE, AND INTERPRETER

 This section of the report describes a virtual machine and integrated development

environment for the Matrix 2070 ATMS controller.

First we reviewed the availability and feasibility for implementing alternative virtual

machines for this controller. From the beginning we were told that this product was desirable for

two reasons. The first reason was the cost of a programming seat on “codewrite,” the current

compiler, is high. The second reason was that frequent changes are anticipated by UDOT, and a

product was needed to support downloads over a wide area network. The first suggestion was to

use a Java virtual machine. Sun Microsystems and microware recently have developed an

embedded Java for OS9. Although this possibility was considered, the price was not reasonable.

A single seat on Sun’s embedded server would cost $3500 (http://performance-

computing.com/news/981005.shtml). After further consideration of using Java, it became

apparent that this was probably not the best route. Looking into other languages, it was decided

that it would be more feasible to write our own language that would be a subset of C and would

include all the functionality that was required for traffic controller projects.

 We also looked into other languages and put together how we would construct our

language. We wanted the syntax to be the same as, or very close to, C. This approach would

have some benefits over Java. First, it would allow previous code to compile and run on our

interpreter. Second previous programs were written in C and the programmers are familiar with

it. Third, C is an established language if we used its syntax, over on designed by us, we would be

able to avoid ambiguities in the syntax.

 The task of designing the language was delegated to Newell Crookston, head

programmer. Newell looked into many interpreters already on the market for ideas on his design.

The one that he found most useful was called Haskell. Haskell is a purely functional language

designed at Yale. One of Haskell’s features that we liked was how it handled arrays. One of the

 12

major differences of our language and C is that all arrays are dynamic. For example: if you call

for a value outside the arrays original bounds it will automatically resize the array to fit the size

requested. This feature simplified many of the other problems that were encountered when

writing a language. For example , all functions are stored in the byte code as an array. In the

debugger, looking into the array will typically show the function stored in the array. When

debugging your code this is a useful thing to know.

 As discussed above it was decided that a subset of the C language would best fit our

purposes. The next major hurdle was deciding what features would be included in our language.

With little experience working with the controller, and the grad student who did most of the work

leaving for another job, this was a difficult task. After meeting with the technical advisory

committee we had a much better idea of what functionality they wanted and expected to include

most of it in the final prototype.

The Interpreter

 Running byte code on our interpreter is simple. First, choose “Compile Make File” from

the Tools menu. This will produce byte code with extra information for the debugger. If this byte

code is to be used on the 2070 controller you must then save the byte code with no debug, this

option also is found in the tools menu. Once you have the byte code with no debug information,

you are ready to download in onto the Controller. We chose to call the virtual machine interpret

so once the byte code file is on the controller you would type interpret <ByteCodeFile.ext>. Our

interpreter does not support multiple threads, so if multiple programs must run at the same time,

one or more of them must run in the background.

 Along with the virtual machine for the Controller we were to include a virtual machine

for a PC and a Compiler. Currently the virtual machine for the PC is in the form of a debugger,

in the debugger you can watch your code being executed and see the values of the buffers. The

 13

compiler comes with a development environment and was demonstrated at our last meeting with

Gardner.

The Compiler

Upon first opening the Compiler you will be greeted by an empty Window (Figure 1).

From here you can open documents, start new documents, or create and edit make files. You will

have the Open, New, and Exit options enabled from the File menu. These will allow you to open

a "C" file for editing, or create a new edit window for creating a new "C" file.

 Figure 1 :Open Window for IDE

 14

After a File is opened the View and Edit menus are enabled. A text edit area is opened in the

main window, which will allow for modifying any text document. Text will be colored according

to C statement. Figure 2 shows a sample source code file. In this example, comments are green,

keywords in bold blue, numbers in light blue, and symbols in red. The coloring can be modified

in the View Appearance menu option (Figure 3).

 Figure 2: Edit Window, example source code

You can have as many open text areas as you want. To switch in between text areas you can use

the tabs at the top of the window, as shown. Choosing the Appearance option will display the

following (Figure 3). This window will allow the programmer to choose the colors that best fit

personal preferences.

 15

 Figure 3: Appearance window

From the Tools menu, there is the option of "Proc Make" (process make) this will

prompt for a make file. Opening the make file will take that make file and generate the byte code

from the source files listed in the make file. It will then display the program Info window (Figure

4).

Figure 4: Program and function information window

The Program Info window will show a list of all the functions in the program. Double clicking on

any of the functions will take you to the Function Info window, shown here on the right. This will

 16

give a list of variables and a list of byte code instructions, which will prove useful in the debug

process. The debug option will give you a similar window and will allow you to step through the

program. The way this runs is specifically made for use in developing for the 2070 controller.

The byte code is developed and debugged on a PC for implementation on the Controller. This can

cause some difficulty in debugging and testing the program. Consequentially we developed our

debugger to step you through the byte code, showing you the values of the variables and stack as

each expression is executed. This will allow the programmer to see what the program is doing

before testing it on the 2070 controller. Eventually functionality will be added where the

programmer will be able to step through the source code line by line. Currently, the programmer

only is allowed to step through the byte code produced by the source code. We also hope to add a

full virtual machine that will run on the PC. This virtual machine would run on the PC exactly as

the virtual machine would run on the 2070 controller.

 Figure 5: Debug Window

 If a main function is not present in the body of the program with the main key word, then

the program automatically chooses the last function in the program to be the main function. In the

 17

debug window of Figure 5 we are using the sample code found in Figure 2. This code was

prepared to test and demonstrate features of the compiler. In this example there is no main

function so MainTest became the new main function. In the debug window of Figure 5 we have

just stepped into BetterTestFunction1. BetterTestFunction1 has default values on three of its

parameters, which is supported in this language, the values are found on the stack. They were out

on the stack as soon as we entered the function. As you can see in Figure 5 we have just assigned

the default values, first three lines of expression area, and we are about to step into the function

call testFunc1.

 To produce byte code you must first create a make file. Creating a make file is simple.

A make file is just a text document listing the source files in your program. For our make files

each source file has its own line with the source that has the main function listed last. Save this

file with a .make extension for use with the debugger. The procedure may best be described by

the following steps:

Step 1: Open a new text area in the main window.

Step 2: List all the files that are included in your program – each file on its own line.

Step 3: Save this file with the .Mak extension.

This procedure will give you a make file that the Make Proc option will turn into a BCP (Byte

Code program) File. When running the debugger open the BCP file created by the make Proc.

Option.

 Appendix A defines the grammar for the language. Appendix B contains the source code.

Some of the major differences between this compiler C and conventional C are:

1) Case insensitive on key words

2) No Type Casting

3) No unions or structs

4) No Octal or Hex numbers

 18

5) No case statements

6) No Goto

7) No Pointers

8) No bitwise operations

9) No Preprocessor

10) Does not include the following functionality

a) <<. >>

b) <<=, >>=

c) ##

d) sizeof

e) &=

f) ^=

g) ||=

 19

CONCLUSIONS

A new computer language grammar was created. An Integrated Development

Environment and compiler were developed for the grammar. A virtual machine was developed to

operate with the OS-9 operating system on the 2070 controller. Several simple demonstration

programs were written using the new grammar and successfully implemented on the 2070

controller.

An attempt was made to develop more sophisticated programs of the type that could be

expected for practical applications. The grammar was too restrictive to be of practical value.

Although the approach adopted in this study did not succeed in providing a commercial

tool, it did produce several benefits. It eliminated one dead-end approach from future

consideration by us or others. Also, the development of the software system had great educational

value for the students, and better prepared them for pushing the envelope in the future.

 Results of the study indicated that a better approach in the future may be to use a

modified version of a JAVA engine.

 20

RESOURCES

1. Transportation Electrical Equipment Specifications (TEES); March 1997.

2. Microware 2070 DOS Development Package Documentation and Source Code, September

25, 1998.

3. Mark A. Heilpern, OS9 PRIMER, 1994.

4. William C. Wray, et. al. Using Microprocessors and Microcomputers – the Motorola Family,

Fourth Edition, 1999.

5. G. J. Lipovski, 16-And-32 Bit Microcomputer Interfacing – Programming Examples in C and

M6800 Family Assembly Language, 1990.

 21

APPENDIX A

GRAMMAR

 22

Lexemes:
Type-><void>
 -><Integer>
 -><Real>
 -><Char>
 -><bool>

Void->

Integer-><Digit> | <Digit><Integer>

Digit->’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’|’0’

REAL-><Integer>”.”<Integer>

Char->’_’|’a’|’b’|’c’|’d’|’e’|’f’|’g’|’h’|’i’|’j’|’k’|’l’|’m’|’n’|
 ’o’|’p’|’q’|’r’|’s’|’t’|’u’|’v’|’w’|’x’|’y’|’z’|’A’|’B’|’C’|
 ’D’|’E’|’F’|’G’|’H’|’I’|’J’|’K’|’L’|’M’|’N’|’O’|’P’|’Q’|’R’|
 ’S’|’T’|’U’|’V’|’W’|’X’|’Y’|’Z’

Identifier-><Char> | <Identifier><Char>

Variable-><Type><Identifier>

Const->’const’<Type><Identifier>

Operators:
ArithmeticOp->’+’|’-’|’*’|’/’|’%’

EqualityOp-> ’==’|’!=’

IncOp-> ‘++’|’--’|<IncOp>(‘+’|’-‘)

LogicalOp-> ‘&&’|’||’|<EqualityOp>

RelationOp->’<’|’>’|’>=’|’<=’

AssignmentOp-> ‘=’|’*=’|’%=’|’/=’|’+=’|’-=’

BranchOp-> ‘break’ | ‘return’

Goal-><Program | Library>
 Program-><IncludeSection><FunctionProtoSection><FunctionSection>
 IncludeSection->(‘#include’ <IncludeFileName>) |
 <IncludeSection>(‘#include <IncludeFileName>
 IncludeFileName-><’<’filename’>’> | <’”’filename’”’>

 FunctionProtoSection-><FunctionDec>’;’|
 <FunctionDec><FunctionProtoSection>

 FunctionDec-><Type><FunctionName>’(‘<parameters>’)’
 FunctionName-><Identifier>
 Parameters-><Parameter> | <Parameters>’,’<Parameter>
 Parameter-><Type>’ ’<Identifier> | <Type> ‘ &’<Identifier>

 23

 FunctionSection-><Function> | <FunctionSection><Function>
 Function-><FunctionDec><CompoundStmt>

 CompoundStmt->’{‘<StmtList>’}’
 StmtList-><Statement>’;’ | <Statement><stmtList>’;’

Statement->(<Variable>’=’<Expression>) | <ConditionalStmt>
 <LoopStmt> | <BranchStmt> | <Const> |
 <FunctionalStmt>

Expression-> <BoolExp> | <ArithmeticExp> | <FunctionalStmt>
 BoolExp-><BoolIden>(<relationOp> | <LogicalOp)<BoolIden>
 BoolIden-><Identifier> | <Const>

 ArithmeticExp-><ArithIden><ArithmeticOp><ArithIden> |
 < ArithmeticExp ><ArithmeticOp><ArithIden>
 ArithIden-><Variable>|<Const>

 FunctionalStmt-><FunctionName>’(‘<Passingvalues>’)’
 Passingvalues-><PassingVal> | <PassingVal>’,’<PassingValues>
 PassingVal-><Variable> | <Const> | <FunctionStmt>

ConditionalStmt->’if’ <BoolExp> (<Statement> | <CompoundStmt>) |
 ‘else’ <BoolExp> (<Statement> | <CompoundStmt>)

LoopStmt->’do’<compoundStmt>’while’<BoolExp> |
 ‘for(‘ (<Variable> |) ‘;’ (<BoolExp> |) ‘;’
 (<Arithmeticexp> |) ‘)’ <CompoundStmt>

BranchStmt->’break’ | ‘return’ <functionalExp> |
 ‘return’ <Arithmeticexp> | ‘return’ <Const>

Library-><IncludeSection><FunctionProtoSection><FunctionalSection>

Key

 | or
 ‘’ whatever is in single quotes must be exact text.

 | followed by nothing means there is the option for 0 of the
 other options.
 () only one of the items in the parenthesis
 <> grammer defined term.

	Introduction
	Background

	Objectives
	Preparing with OS-9 and FasTrak
	Working with the 2070 Controller
	Using FasTrak
	The 2070 Controller and OS-9

	Traffic Light Simulation Tests
	Traffic Light Simulation Using the Controller’s Front Panel
	Traffic Light Simulation Using the Graphical Process Model

	Building the Interpreter, C Compiler, and IDE
	The Interpreter
	The Compiler

	Conclusions
	Resources
	Appendix A: Grammar

